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The behavior of particles driven through a narrow constriction is investigated in experiment and simulation.
The system of particles adapts to the confining potentials and the interaction energies by a self-consistent
arrangement of the particles. It results in the formation of layers throughout the channel and of a density
gradient along the channel. The particles accommodate to the density gradient by reducing the number of
layers one by one when it is energetically favorable. The position of the layer reduction zone fluctuates with
time while the particles continuously pass this zone. The flow behavior of the particles is studied in detail. The
velocities of the particles and their diffusion behavior reflect the influence of the self-organized order of the
system.
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I. INTRODUCTION

Pedestrians in a pedestrian zone �1�, ants following a trail
to food places and many other systems of interacting entities,
which are moving in opposite directions to each other, show
a prominent feature, namely the formation of lanes along the
direction of their motion. This formation of lanes has been
studied theoretically for colloidal particles in three dimen-
sions �2–4� as well as in 2 dimensional systems �5–7�. These
examples indicate that flow of particles can have a substan-
tial influence on the structure formation of a system of inter-
acting particles. Experimental studies on such systems have
not been performed up to date, first hints of a lane formation
transition could be seen in a three-dimensional system of
oppositely charged colloids driven in opposite directions by
application of an external electric field �8�. Studies of people
in panic �for example trying to escape from a building� show
the influence of constrictions on such moving ensembles.

A system of two dimensionally confined moving colloidal
particles also resembles the classical analog of a quantum
point contact in mesoscopic electronics �9,10� or in metallic
single atom contacts �11–13�. These contacts exhibit trans-
port in electronic channels due to quantization effects. Such
quantum channels can be seen as similar to the layers in the
macroscopic transport, since both occur due to the interac-
tion of the particles with the confining potential. A classical
version of a similar scenario can be built on a liquid helium
surface, which is loaded with charges. For such a system the
formation of layers has been reported as well �14�. The
change in the number of such layers in the vicinity of a
constriction has been predicted from Langevin dynamics
simulations of Yukawa particles �15�.

In biological systems the transport of interacting particles
through narrow constrictions is of high importance for many

processes, for example for the size selectivity of transport in
ion channels �16�. The complexity of such systems allows
only to make simplified statements on the underlying physics
governing such phenomena. Experimentally easily accessible
model systems can reveal many of the underlying processes.
In the context of microfluidics and “lab-on-a-chip” devices
one is interested in nonequilibrium transport and mixing phe-
nomena on the microscopic scale �17�.

In this paper we present a two-dimensional system of
moving, superparamagnetic particles. The interaction ener-
gies between the particles and therefore the effective tem-
perature of the system can be set by application of an exter-
nal magnetic field. The phase behavior of these particles in
two dimensions has been studied extensively without exter-
nal fields �18–21� and under the influence of external fields
�22–29�. In addition to this, it has been shown that confine-
ment of these particles in a narrow channel leads to the for-
mation of layers, in order to conform to the boundaries set by
the hard walls �30,31�. The effect of the type of confinement
on the ordering of a crystal confined to stripes of finite width
was analyzed using Monte Carlo simulations by Ricci and
co-workers �32–34�. The number and the stability of these
layers change as the density, the interparticle interactions, or
the boundary conditions at the wall are varied. In this work
we address the question how these layers change when the
particles are subject to a driven motion along the channel. In
order to investigate this moving state, we first study the prop-
erties of a static system using Brownian dynamics simula-
tions. Based on these results, the moving system is charac-
terized and the results are compared to an experimental
system of superparamagnetic particles moving through a
lithographically defined channel.

II. EXPERIMENTAL SETUP

The particles are constricted to a narrow channel connect-
ing two reservoirs, which are defined on a substrate using
UV-lithography �35�. Images produced with a scanning elec-
tron microscope �SEM� of such a channel setup are shown in
Fig. 1.
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Channel geometries of various width and length have
been produced. The simulation results are compared to a
channel being 60 �m wide, 2.7 mm long and having chan-
nel walls of about 5 �m in height. The channel is filled with
a suspension of superparamagnetic particles of diameter
4.5 �m in water �Dynabeads�. Identical particles have been
used previously and characterized in �23�. A summary of the
properties of these colloidal particles is given in Table I.

Gravity confines the particles to the bottom surface of the
channel due to the density mismatch between the colloids
and the surrounding water. An external uniform magnetic
field B=Bẑ is applied perpendicular to the bottom surface.
As a consequence the colloids form a monolayer in the x-y
plane with induced parallel dipole moments in z direction
giving rise to a purely repulsive pair-wise particle interac-
tion. The strength of the repulsive force at distance rij = �ri
−r j� is given by

Vij�rij� = ��0/4��M2/rij
3 , �1�

with the magnetic dipole moments M =�effB of the particles.
The importance of the pair interaction can be characterized
by the dimensionless interaction strength

� = �0M2��n�3/2/�4�kBT� , �2�

where n denotes the �overall� particle number density, kB the
Boltzmann constant, �0=1.257�10−6 Vs /Am is the mag-
netic permeability of free space and T the temperature. For
an unbounded equilibrated two-dimensional �2D� system

which forms a triangular lattice, the particle number density
can be written in terms of the lattice constant ã as

n =
2
�3

1

ã2 . �3�

So, �= � 2�
�3

�3/2Vij�ã� / �kBT� is the mean dipolar interaction en-
ergy of Eq. �1� in terms of the thermal energy. Accordingly,
the applied magnetic field B which is connected to the mag-
netization via M =�effB plays the role of an effective inverse
temperature.

The external magnetic field is the dominant magnetic field
in this system as it is obvious from the large particle separa-
tions in the video microscopy snapshot of Fig. 10�a� and the
mutual induction between the colloids is negligible. Thermal
and magnetically induced fluctuations of the positions of the
particles perpendicular to the plane of inclination are less
than 10% of the particle diameter and can be neglected. Tilt-
ing of the whole channel setup induces transport of the col-
loids from one reservoir into the other due to gravity. An
alternative driving method would be the application of an
in-plane magnetic-field gradient.

Before starting experiments the system is set up exactly
horizontal. The particles are allowed to sediment to the bot-
tom surface and arrange in the equilibrium configuration
within several hours. Before tilting the whole apparatus the
particles are either all confined in one reservoir �by use of
laser tweezers� or uniformly distributed along the channel
and within both reservoirs. In the experiment an inclination
of �exp=0.6 deg is chosen, where the system is in a gravita-
tionally driven nonequilibrium situation, but not yet in the
regime of plug flow. This inclination results in an average
particle drift velocity vdrift�0.035 �m /s. A typical snapshot
from the experiment of the particles moving along the chan-
nel is given in Fig. 10�a�.

The particle trajectories are tracked with a video micro-
scope. The repetition time of the video microscope setup is
10 s. All experiments are made at room temperature
T�295 K.

In the experiment the number density of the colloids is
defined as the number of colloids divided by the area of the
2D channel within the field of view of the video microscope
accessible to the centers of the colloids. This dimensionless
parameter � was introduced by Zahn et al. �18�, who studied
experimentally the so-called Kosterlitz-Thouless-Halperin-
Nelson-Young �KTHNY� phase transition in an unbounded
two-dimensional equilibrium system of superparamagnetic
particles, to characterize the system state. They found that
for ���i�52.9 the system behaves such as a fluid, and for
�	�m�60.9 the system forms a triangular lattice. For the �
values in between they observed the so-called KTHNY or
hexatic phase.

In the experiments described below a magnetic field of
strength B=0.24 mT is applied, corresponding to ��72
which is in the solid state region of the phase diagram.

III. SIMULATION DETAILS

We conduct Brownian dynamics �BD� simulations of a
two-dimensional microchannel setup in order to investigate
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µm100
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FIG. 1. �Color online� SEM images of the full channel geometry
connecting two reservoirs and an enlargement of the channel
entrance/exit region. Also some dried colloidal particles can be
seen. During measurement the particles outside of the channel are
removed so that they don’t influence the particle transport within
the channel �36�.

TABLE I. Particle properties of the Dynabeads used in the
experiment.

Diameter 
 4.55�0.1 �m

Mass density �colloid 1.6 g /cm3

Particle mass m �7.6�0.1��10−14 kg

Saturation magnetization M0 �5.7�0.4��10−13 Am2

Effective susceptibility �eff 7.5�10−11 Am2 /T
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the flow behavior of the colloidal particles within the chan-
nel, reflecting the experimental situation, and by varying sys-
tematically various parameter values of inclination, over-all
particle density, and channel width. The equation of motion
for an individual colloidal particle is given by an over-
damped Langevin equation. This approach neglects hydrody-
namic interactions as well as the short-time momentum re-
laxation of the particles. Both approximations are fully
justified in the current experimental context. Typical momen-
tum relaxation times are on the order of 100 �s and there-
fore much shorter than the repetition time of the video mi-
croscopy setup �10 s� used in the experiment. Thus the
colloidal trajectories ri�t�= �xi�t� ,yi�t�� �i=1, . . . ,N� are ap-
proximated by the stochastic position Langevin equations
with the Stokes friction constant 


dri�t�

dt
= − �ri	

i�j

Vij�rij� + Fi
ext + F̃i�t� . �4�

The right-hand side includes the sum of all forces acting on
each particle, namely, the particle interaction, the constant
driving force along the channel Fi

ext=mg sin���x̂ and the

random forces F̃i�t�. The latter describe the collisions of
the solvent molecules with the ith colloidal particle and
in the simulation are given by a Wiener process, i.e., by

random numbers with zero mean, 
F̃i�t��=0, and variance


F̃i��t�F̃i��0��=2kBT��t��ij���. The subscripts � and � de-
note the Cartesian components. The effective mass m of the
particles is determined by the density mismatch between the
particles and the solvent. These position Langevin equations
are integrated forward in time in a Brownian dynamics simu-
lation using a finite time step �t and the technique of Ermak
�37,38�.

Particles are confined to the channel by hard walls in y
direction and at x=0 �channel entrance�. These walls are re-
alized both as ideal elastic hard walls and as proposed in
�39�, where a particle crossing the wall is moved back along
the line perpendicular to the wall until contact. Both realiza-
tions result in the same flow behavior. Also we performed
simulations with the particles at the wall kept fixed. The
channel end is realized as an open boundary. To keep the
over-all number density in the channel fixed, every time a
particle leaves the end of the channel a particle is inserted at
a random position �avoiding particle overlaps� within the
first 10% of the channel, acting as a reservoir. A cutoff of
10
 was used along with a Verlet next neighbor list �38�.
Checks of particle overlaps are included in the simulation,
but for all ordered systems we never found two overlapping
particles.

Starting from a random particle distribution within the
channel, we first calculate an equilibrium configuration
�Fi

ext=0� of a closed channel with ideal hard walls. After-
wards we apply to the configuration of uniform density the
external driving force and allow the system to reorganize for
106 time steps, before we evaluate the configurations. The
time step �t=7.5�10−5�B is used, with �B=
2 /kBT being
the time necessary for a single, free particle in equilibrium to
diffuse its own diameter 
. We choose =3��
, with �
denoting the shear viscosity of the water. The simulations are

done with 2000–4500 particles, for a channel geometry of
Lx=800
 and Ly = �9–12�
, and �eff,sim=3�10−11 Am2 /T.
Thus external magnetic fields B=0.1–1.0 mT and a total
particle density of n=0.4
−2 correspond to ��21.34–2134.

IV. EQUILIBRIUM PROPERTIES OF THE CHANNELS

Equilibrated configurations of systems confined to a mi-
crochannel are used as starting configurations for our analy-
sis of the transport behavior. This guarantees that at the be-
ginning of the transport simulation the particles are
uniformly distributed over the whole channel. First, we com-
pare some results found for the 2D microchannels in equilib-
rium �the external driving force is switched off� with the
results of Haghgooie and co-workers �30,31,40�.

During the equilibration process the channel beginning at
x=0 and the channel end at x=Lx are either closed by ideal
hard walls, or periodic boundary conditions are applied in x
direction. By doing so, we assure that no transport is initiated
due to the boundary conditions used. The simulation start
parameters are chosen in such a way that they closely reflect
the situation of the experiment. In all simulations the area
Lx ·Ly is defined as the region accessible to the particle cen-
ters. This is the reason, why in the following simulation
snapshots the y positions of the edge particle centers coin-
cide with the channel boundary. When comparing the chan-
nel widths in the simulation to the widths of the channel in
the experiment, one has to add the particle diameter 
 result-
ing in Ly

exp=Ly +
, e.g., a channel with Ly =10
 corresponds
to a channel of Ly

exp=11
=49.5 �m for the particles used.
The equilibration process is usually started from a uniform
random particle distribution over the whole channel. But to
avoid a physical instability of the starting configuration the
particle separations are limited to values greater than 0.7
.
For very dense systems this initialization method of course
breaks down and we start from a hexagonally ordered con-
figuration.

A. Influence of the confinement

The triangular lattice is the high-density equilibrium con-
figuration of an unbounded 2D system. Here, we analyze
how the confinement modifies the resulting equilibrium con-
figurations. We submitted simulation runs to determine the
equilibrium configuration in dependence of the channel
width Ly for a superparamagnetic system with B=0.5 mT
applied and the global particle density n=0.4
−2 which cor-
responds to �=533.74 and is deep in the solid phase region.
Typical snapshots of representative parts of the equilibrium
configurations being obtained are shown in Fig. 2. Shown are
the regions 300
�x�600
 of a channel with a total length
of Lx=800
. Notice, that the channel widths are stretched by
a factor of about 6.67.

Obviously, whether an ordered or a perturbed configura-
tion is formed strongly depends on the channel width Ly. For
certain channel widths it is energetically favorable for the
system to arrange into what we call layers. Right of configu-
ration snapshots of Fig. 2 the equilibrium density profiles
perpendicular to the channel walls are plotted. They are cal-
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culated by taking the average over 2000 equilibrium configu-
rations. For the channel widths Ly =7
, 8
 and 10
 the
peaks of these density histograms are well separated and oc-
cur at almost regular spacing across the channel. These prop-
erties are the signature of a well-defined layered structure
parallel to the walls. For the channel widths Ly =6
 and Ly

=9
 the system cannot equilibrate into such a single layered
structure over the full channel and only partial layering is
visible in the configuration snapshots. Such a confinement
induced layering phenomenon is in agreement with the re-
sults for liquid-dusty plasmas �41� and the results of the
simulations of Haghgooie �30�.

The channel widths of 10
, 9
, 8
, 7
, and 6
 corre-
spond to the widths 6.80R, 6.12R, 5.44R, 4.76R, and 4.08R
in units of R=1.471
, which is the expected separation of
layers for the unbounded system. A pronounced boundary
induced layer structures was also seen for much wider chan-
nels, for example for the case Ly =20
.

Even for wide channels of width Ly =20
 a clearly bound-
ary induced layered structure occurs for a system at �
=133.44.

B. Layer order parameter

The number of layers forming within the channel can be
identified by an appropriate local order parameter. We there-
fore divide the channel of width Ly into several bins in x
direction each containing nbin particles and define for differ-
ent number of layers nl the so-called layer order parameter

�layer,nl
= � 1

nbin
	
j=1

nbin

ei�2��nl−1�/Ly�yj� , �5�

which is unity for particles distributed equidistantly in nl
layers across the channel width starting at y=0, and signifi-
cantly smaller for the nonlayering case.

In Fig. 3 all defects within a partition of the equilibrated
configuration are marked. For the layered system state the
defects always occur in pairs �forming a dislocation� and are
located predominantly close to the walls with quite a regular
spacing. Due to the purely repulsive nature of the particle
pair interaction the edge particles are pressed against the
confining ideal hard walls as it is obvious from the high
peaks of very small width at the boundary of Fig. 2. These
defects along the walls are a consequence of a �slightly�
higher line density of the edge particles compared to the bulk
layers �30�. For example, for the system with Ly =10
 of Fig.
3 the line density of the wall layers is about 6% higher than
of the nearest bulk layers. Edge layers have only a single
neighbor layer whereas bulk layers have two. Putting an ad-
ditional particle into a layer results both in stronger interac-
tion within this layer and of this layer with its neighboring
layers. Thus, it is energetically favorable for the system to
have defects along the wall instead within the bulk, because
there the involved energy barrier is lower.

The appearance of dislocations along the wall was also
seen in �24,42�, where we systematically analyzed the equi-
librium configurations constricted within a circular hard-wall
confinement for dipolar and screened Coulomb pair interac-
tion as function of the particle number. In these systems the
particles arrange in multiple circles and the defects occur due
to the bending of the lattice in presence of the curved bound-
ary. This is in contrast to the situation here, where the planar
walls give no need for the lattice to bend.

So, we can conclude that the layer order parameter is
more suitable than �6�x� for the detection of layered struc-
tures and changes therein, because it is insensitive to defects
close to the wall.

C. Effects of channel width and interaction strength

Two independent simulation parameters have a strong in-
fluence on the state of the dipolar system laterally confined
between two parallel ideal hard walls. These are the wall
separation Ly and the dimensionless interaction strength �. In
the following, we will compare these dependencies for our
simulation parameters qualitatively with the results of Hagh-
gooie �40�.

0
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FIG. 2. �Color online� Typical simulation snapshots of partitions
with length 300
 of equilibrated configurations for a dipolar system
�B=0.5 mT, �=533.74� and a selection of channel widths �10
,
9
, 8
, 7
, and 6
 from top to bottom�. The channel widths are
stretched by a factor of about 6.67. All configurations have the
overall particle density n=0.4
−2. The curves at the right of each
configuration snapshot show averaged density profiles across the
channel. For clarity reason, the large magnitude peaks at the walls
have been truncated at a fixed peak height.

FIG. 3. Simulation: Snapshot of a partition �450
�x�580
�
of the equilibrium defect configuration for the system with Ly

=10
 as shown in Fig. 2. Full circles ��� mark the bulk particles
with six nearest neighbors and particle on the wall with four nearest
neighbors, symbol � corresponds to fivefold symmetry �or three-
fold if on the wall�, and symbol � to sevenfold symmetry �or five-
fold if on the wall�.
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1. System state dependency on the channel width

The influence of the channel width on the system state is
analyzed by examining the behavior of the global layer order
parameters �layer,nl

. The result is shown in Fig. 4 for channel
widths between 2
 and 11
. The global layer order param-
eters as function of the channel widths show for different
number of layers nl distinct response regimes where their
values are close to one. On top of the graph, we also indi-
cated the channel width in units of the length scale R.
Clearly, the change in the number of layers happens with a
period of R. For integer multiples of R the system is not in
a layered configuration, but in the transition between two
layered structures. This means that the confinement induced
optimal layer separation is smaller than the separation R ex-
pected for the unbounded system, in agreement with the
findings of equilibrium studies by Haghgooie et al. �40�.

The above scenario can be confirmed by looking at the
bulk defect concentration

Cdefect
b �

Ndefect
b

Nb , �6�

which is defined as the ratio of the number Ndefect
b of bulk

particles with either more or less than six nearest neighbors
and the total number Nb of bulk particles. All particles with a
distance greater then 0.5
 are defined as bulk particles. In
Fig. 5 Cdefect

b is plotted as function of the channel width for
identical simulation parameters as used above. The concen-
tration of defects in the bulk shows an oscillatory behavior
with a period of R. The peak positions indicate the channel
widths where the system cannot equilibrate into a layered
structure, and the positions of the minima coincide with
stable layer configurations. This behavior is in good agree-
ment with the results of Haghgooie as can be seen from
taking slices of constant �H in Fig. 6 of �40�. The decay in
the maxima values for increasing channel width indicates the
approach to the bulk behavior.

2. Time evolution of the defect configuration

In Fig. 6 the time evolution of the defect concentration
Cdefect

b of the bulk particles during an equilibration run is
explicitly plotted for a selection of � values for a channel of

width Ly =10
. All runs are started from a random particle
distribution. After a time of 10 �B the defect concentration
remains unchanged for all � values. For 45.0���80, i.e.,
for the transition region between the liquid and the solid
state, the equilibration process is slower than for the other
values. The fluctuations increase near the phase boundary.
These effects are consistent with the results of Haghgooie
�40� obtained for an unbounded system.

3. System state dependency on the interaction strength

In Fig. 7 we show density profiles perpendicular to the
confining walls for the two channel widths Ly =9
 and Ly
=10
 at four values of �. On the left-hand side both systems
are liquid whereas on the right-hand side they are both in the
solid state. These density histograms are obtained by taking
the average over 3500 configurations in equilibrium. The
system characteristics are very different depending on the �
value and the channel width Ly. For high � values, where the
system is in the solid state, the density profile for the channel
width Ly =10
 is sharply peaked at the positions of the seven
layers. On decrease in the interaction strength � these peaks
broaden and have a Gaussian profile down to a value of �
�65. The central peaks show greater broadening than the
peaks at the wall, i.e., the system melts first in the center of
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FIG. 4. �Color online� Simulation: the layer order parameter as
function of the channel width. The simulation parameters are: B
=0.25 mT, �=133.44, R=1.471
, Lx=800
, n=0.4
−2, and peri-
odic boundaries in x direction.
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the channel. Even for low � values as ��12.01, where the
unbounded system would be deep in the liquid state, the
particles at the wall are still relatively localized in their y
positions. A clear density minimum between the colloids in
the edge layer and the colloids of the central region can
always be identified. For the channel width Ly =9
 the melt-
ing scenario is different. The peak profile is less pronounced
for �=533.74 and there is less order across the channel. A
mixture between a structure of six and of seven layers is
indicated by the positions of the peak maxima. The structure
of seven layers is favored more, because the peaks connected
to a structure of seven layers are more pronounced than the
remaining peaks related to six layers. Decreasing � again
leads to a broadening of the peaks and the structure with six
layers becomes more favorable ��=133.44�. The unbounded
system would be well in the solid state at this value at this
interaction strength. For �=85.40 only the peaks related to
six layers remain, and for �=12.01 no significant qualitative
difference to the situation for the channel of width 10
 ex-
ists.

These changes in the peak characteristics of the density
profile across the channel of width Ly =9
 is also reflected in
the behavior of the layer order parameters in Fig. 8 for nl
=6 and nl=7 layers on variation in the interaction strength.
�layer,nl=6 exhibits a maximum at about �=90, and strongly
decreases for higher � values whereas the values of
�layer,nl=7 increase to values of about 0.8.

Piacente and co-workers �43� studied the structural, dy-
namical properties, and melting of a quasi-one-dimensional
system of charged particles, interacting through a screened

Coulomb potential in equilibrium. This system is related to
our situation, but a different particle interaction potential is
used and the particles are confined in y direction by a para-
bolic potential. They also find a rich structural phase diagram
with different layered structures as function of the screening
length �D

−1 and the electron density ne of the system.

V. TRANSPORT BEHAVIOR OF COLLOIDS IN
MICROCHANNELS

Now, we want to address the transport behavior of col-
loids confined to such microchannels as described in the pre-
vious section. The colloids are driven by the application of
an external driving force F and thus form a system in non-
equilibrium. This driving can be of gravitational origin as in
our case, or due to the presence of an electrical or magnetic
field or an osmotic pressure difference between both channel
ends. To match the experimental situation closely, we will
concentrate mainly on colloids with repulsive dipolar pair
interaction driven by gravity. First we introduce the effect of
dynamical rearrangement of the colloids during their flow
along the channel. We call this effect layer reduction.

A. Layer reduction

A first impression of the particle arrangement under the
influence of an external driving field give the Figs. 9 and 10
which depict typical configuration snapshots from simulation
and experiment. The particles move along the channel from
left to right in the positive x direction.

The external magnetic field strength B, which is respon-
sible for the strength of the pair interaction and the overall
particle number density n are chosen in such a way, that the
confined equilibrium system is hexagonally ordered. This is
true also for the unbounded system under identical condi-
tions. Figure 9 is a representative snapshot taken in the simu-
lation of the full channel having the length Lx=800

=3.6 mm. The first 10% of the channel act as reservoir. In
the experiment the channel length is Lx=444.4
=2.0 mm.
The strength of the constant driving force Fext=Fex can ei-
ther be specified directly or by definition of the inclination �
resulting in F=mg sin �. Under the influence of external
driving the particles still form layers. Additionally we ob-
serve, both in experiment and in simulation, a decrease in the
number of layers in the direction of motion �36,44�. The
layer transitions are clearly visible in Fig. 9, where they are

Γ = 12.01 Γ = 85.40 Γ = 133.44 Γ = 533.74

Ly = 9

Ly = 10

FIG. 7. �Color online� Simulation: density profiles perpendicular
to the walls for Ly =9
 and Ly =10
 in dependence of �. Again, the
peaks at the walls are truncated for better clarity.
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FIG. 8. �Color online� Simulation: comparison of the depen-
dency on the interaction strength � of the global layer order param-
eter �layer,nl

with nl=6 and nl=7 for the channel width Ly =9
.

FIG. 9. �Color online� Simulation: full channel snapshot for a
channel with ideal hard walls ��=533.74, �=0.2 deg� after 106

BD simulation steps having reached a stationary nonequilibrium
state. Note, that the scaling on the y axis is stretched by a factor of
20 compared to the x axis scaling.
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located at x�420
 from eight to seven layers, at x�700

from seven to six layers, and at x�770
 from six to five
layers.

The images of Fig. 10 show in enlargement the part of the
channel near the region of layer reduction zone being marked
by the rectangle. The video microscope snapshot of Fig.
10�a� is taken from the experiment �36�. The small white
spots at the particle centers allow for precise tracking of the
particle trajectories with the video microscope. Similar snap-
shots we get from our BD simulations with either comoving
�Fig. 10�b�� or fixed edge particles �Fig. 10�c��. In these two
subfigures the filled circles represent the particles at their real
size relative to the channel width. For these highly ordered
systems the layer transitions take place on the scale of only a
few particle diameters.

B. Density gradient along the channel

The simulation snapshots above are taken after a time
long enough for the system to reach a stationary nonequilib-
rium situation. Applying the external driving force to the
equilibrated channel configuration leads to the build up of a
particle density gradient along the channel. This is an effect
of the chosen boundary conditions at the channel entrance
and exit, which leads to a pressure difference between both
channel ends. After about 106 BD time steps this density
gradient does not change any more, which is the signature of
a stationary state. The exact origin of the density gradient is
given by details of the particle-particle interactions in com-
bination with the driving force and will be subject of a sepa-
rate publication.

To study the robustness of the formation of the density
gradient and its connection to the layer reduction in our sys-
tem of gravitationally driven particles, we performed simu-
lations for a variety of inclinations �=0.0 deg–10.0 deg
keeping the overall particle density fixed at n=0.4
−2. The
resulting stationary nonequilibrium density profiles along the
channel are shown in Fig. 11. They are calculated from his-
tograms of the x positions of 1000 configurations in station-

ary nonequilibrium. A very significant decrease in the local
density occurs for x	700
, which is caused by the open
boundary at x=800
. The region 0�x�80
 acts as reser-
voir, where new particles are inserted at random position
whenever a particle drops out at the end of the channel. To
avoid unnecessary high perturbations due to random particle
reinsertion in the reservoir the channel is closed at x=0
 by
a semipermeable ideal hard wall.

All density profiles show a nearly linear density gradient
in the interval x� �150,600�
, which is maximal for �
=0 deg �cf. inset of Fig. 11�. Even at �=0 deg a �osmotic�
pressure difference between both channel ends exists for the
boundary conditions used, and a small particle flux is in-
duced. For inclinations �	1.0 deg the density gradient be-
comes almost zero. For these inclinations the driving force
dominates, and we find plug flow of the particles without
layer reduction. A decrease in the inclination �driving force�
gives rise to an increase in the density gradient. Under non-
plug flow condition we find a self-induced arrangement of
the particles to a nearly hexagonal lattice and the occurrence
of layer reductions with the particles moving across.

C. Dynamical Properties

1. Drift velocity

It is also interesting to study the average overall drift ve-
locity as function of the driving force. The result is shown in
Fig. 12.

For �	0.5 deg the particle flow is dominated by the
driving force. This is the regime of plug flow, where the
particles move with

y

x flow direction

(a)

(c)

(b)

7 layers

7 layers

6 layers

8 layers

8 layers

7 layers

FIG. 10. �Color online� �a� Experiment: video microscopy snap-
shot of colloidal particles moving along the lithographically defined
channel. The channel partition shown has the size �692�60� �m
= �153.8�13.33�
, and the interaction strength is ��72, and �
=0.6 deg. �b� Simulation: snapshots for a channel with ideal hard
walls ��573.3�45��m= �127.4�10�
 , �=640.5�, �c� the same as
in �b� with the particles at the walls �marked green� kept fixed
��573.3�45��m, �=5026, �=0.2 deg�. The rectangles mark the
region of the layer reduction zone.
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FIG. 11. �Color online� Simulation: stationary non equilibrium
density histograms along the channel for several values of the slope
� ��=533.75 and n=0.4
−2�. The vertical line at x=80
 marks the
right end of the reservoir, i.e., the maximum x value up to where
particles are inserted randomly. At x=80
 the angle � increases
from the top to the bottom curve. The inset shows the density gra-
dient in the interval x� �150,600�
 as a function of the inclination
� being obtained from linear fits to the density histograms. Here the
line connecting the data points serves as a guideline to the eye.
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vdrift�Drude =
mg


sin � , �7�

as expected for noninteracting particles. Such a dependency
was formulated by P. Drude �45� for electrical conduction to
explain the transport of electrons in metals. For �
�0.5 deg the average drift velocity deviates from the expec-
tation of the Drude model. Interestingly, for these inclina-
tions the particles move faster than expected. The Drude
model is based on a friction dependent mobility coefficient,
only. For inclinations ��0.2 deg the diffusion behavior of
the particles has to be taken into account, too. Therefore, the
interplay of the small drift and of the diffusion behavior
gives rise to a change in the mobility in x direction.

Particles moving along the channel get accelerated. This
becomes obvious from Fig. 14, where histograms of the drift
velocity together with Gaussian fits in different x-regions of
the channel are plotted. All hydrodynamic interactions are
neglected. Generally, the particle velocities vx in x direction
are normally distributed about the average drift velocity. For
the angle �=0.2 deg the average drift velocity is 
vdrift�
�0.081 �m /s=0.018 
 /s. In the experiment an inclination
of �exp=0.6 deg was chosen, which results in 
vdrift�
�0.035 �m /s=0.0078 
 /s. The velocities of the particles
in the experiment are lower as compared to simulations, pos-
sibly due to the influence of hydrodynamic interactions. The
comparison between edge particles and bulk particles shows
the effect of layer changes of the particles on the velocities.
As mentioned in Sec. IV dislocations are present along the
walls. These dislocations lead to an increased number of
layer changes for the edge particles. During the layer transi-
tion the particles move in y direction rather than x direction;
therefore, we expect to see a superposition of two velocity
distributions in x direction, one centered around zero for par-
ticles changing layers and one centered around the velocity
of the particles in the edge layer. Figure 13 shows Gaussian
fits for the bulk particles and the edge particles. It is apparent
that the velocity distribution of the edge particles can be fit
by a superposition of 2 Gaussian fits, resembling the par-

ticles changing lanes �around 0 �m /s� and moving straight
�0.031 �m /s�. The different velocities of bulk and edge lay-
ers are caused by the difference in density of the layers.

2. Example particle trajectories

The particles flow across the layer reduction zone �cf. Fig.
15�, whereas the position of the layer reduction zone almost
remains unchanged. We show in Fig. 15�a� representative
particle trajectories for a selection of particles. These are
marked in the configuration snapshots �Fig. 15�b�� at their
beginning and the final location of the trajectories. The tra-
jectories clearly show that we do not observe plug flow of a
crystal, but rather a dynamic behavior of particles moving in
layers and adapting to the external potential. The particles
move a distance of about 60
 whereas the layer transition
stays located within x� �390,400�
.

The edge particles are pushed against the ideal hard walls
at y=0
 and y=Ly =10
 by the repulsion of the inner par-
ticles of the channel. This is the reason for their minimal
fluctuations perpendicular to the flow direction. The corre-
sponding fluctuations of the nonedge layers are significantly
larger, and a small increase in the mobility in y direction with
increasing wall separation is found. In the central region
some particles change very abruptly from one layer to an-
other whereas others shift more smoothly. The particles in
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FIG. 12. �Color online� Simulation: average particle drift veloc-
ity in the interval x� �200,770�
 as function of the inclination � or
equivalently the driving force F=mg sin���ex. �Lx=800
, Ly =10
,
n=0.4
−2, and �=533.74�. The solid line is the expected drift ve-
locity for noninteracting particles due to the external driving �Drude
model�.
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the layers next to the edge layers only show a small and
smooth change in their y position. In the regions with fixed
number of layers no particle transitions between layers are
observed for our simulation parameters.

All particles are identical. In Fig. 15�b� the particles are
�color� coded according to the number of nearest-neighbor
particles they have. Bulk particles with six nearest neighbors
and all edge particles are marked light gray, whereas par-
ticles in dark gray �red� have a fivefold symmetry and par-
ticles in medium gray �green� have a sevenfold symmetry of
nearest neighbors. The actual number of nearest neighbors is
determined using a Delaunay triangulation. In the start con-
figuration three defect pairs �dislocations� are in the region of
the layer transition form eight to seven layers, whereas in the
final configuration the position of the layer reduction zone is
connected to a single dislocation. The slightly higher density
of the edge particles gives rise to the scattered medium gray
�green� particles in the next edge layer.

For the same system we analyze the density profiles per-
pendicular to the walls within several subregions along the
channel. Therefore we evaluate 1.5�106 BD steps corre-

sponding to a time interval of �t�122.5�B. The full density
profile for x� �100,740�
 �black curve� is a superposition of
several profiles connected to distinct layering. Highly or-
dered layer structures with sharply peaked density profiles
occur for eight layers in x� �100,380�
 �red curve�, seven
layers in x� �440,630�
 �blue curve�, and six layers in x
� �670,740�
 �cyan curve�. The x regions in between are the
layer transition regions.

In Fig. 16 we explicitly plot the superposition of 1911
video microscopy snapshots of the experimental system and
3000 configuration snapshots used for the density profile
evaluation above. In the experiment the particles move on
average 
�x��670
. The layer reduction zone is confined in
the interval x� �5,50�
. In the simulation the particles have
moved forward on average the distance 
�x��202
, i.e.,
more than a quarter of the channel length. The layer transi-
tion positions remain located within an interval of length
45
. The particles are inserted at a random position in the
region x� �0,80�
. Perturbations of the configuration due to
the random particle insertion heal after a few BD steps.
Therefore the configuration for x	90
 is not influenced by
this particle reinsertion method.

3. Defect removal

Sometimes “defects” remain after the point of layer re-
duction, which vanish on further flow. Here we call a defect
a pair of particles having five and seven neighbors, respec-
tively, which disturb a given layer configuration. These can
be identified from dips they form in the local layer order
parameter defined in Eq. �5� of the current configuration.
Generally, small density gradients along the channel give rise
to a larger number of defects than higher density gradients.
This already is a hint on the close connection of the occur-
rence of layer transitions to the local number density. A de-
fect can be neutralized by a particle changing into the edge
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FIG. 15. �Color online� Simulation: �a� Example particle trajec-
tories which show the dynamical rearrangement of the particles
crossing the layer reduction zone from eight to seven layers. Shown
are the trajectories for the time interval �t=37.5�B ��5�105 BD
steps�. �b� Corresponding snapshots of the starting and final con-
figuration. The general �color� coding of the particles is described in
the text. Additionally, all the particles which trajectories are shown
in �a� have been marked �cluster of black particles�. �c� Histograms
of the y positions within different x-regions evaluated for 1.5
�106 BD steps. The peaks of the edge particles are truncated for
clarity reason. The system parameters are identical to those of Fig.
9.

(b)

(a)

FIG. 16. �Color online� Superimposed configuration snapshots:
�a� of the experiment, �b� of the simulation for 1.5�106 BD steps,
which corresponds to �t�122.5�B. �B=0.5 mT, �=533.74, Lx

=800
 , Ly =10
 , n=0.4
−2 , �=0.04 deg�
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layer. Such a neutralization process of two defects is shown
in the sequence of configuration snapshots of Fig. 17 taken
every 500 BD time steps. The particle which is marked by a
filled black square moves into the edge layer and thereby
removes the perturbation of the layered structure of seven
layers after the position of the layer transition region marked
by the black rectangle. In the final snapshot 17�h� seven un-
perturbed layers remain. Recognize that again the x position
of the layer reduction zone remains unchanged.

D. Connection between the layer transition and the density
gradient

The reduction in the number of layers originates from a
density gradient along the channel. The local particle density
��x� inside the channel is shown in Fig. 18 together with the
local lattice constants dx and dy. The particle separations of

neighboring particles in x and y direction are used to calcu-
late the local lattice constant d of the triangular lattice. Due
to the density gradient along the channel, the ordered struc-
ture is not in its equilibrium configuration at all points along
the channel. Thus the local lattice constant dx, calculated
from the particle separations in x direction, can deviate from
the local lattice constant dy, calculated from the particle
separations in y direction and multiplication with the factor
2 /�3. At the left end of the channel, dx increases to larger
values than dy, indicating that the ordered structure is
stretched along the x axis. At the position of the layer reduc-
tion the system changes back to a situation, where dx is
smaller than dy by decreasing dx and increasing dy by about
20% simultaneously. These changes in separations compen-
sate each other and result in a continuous change in the local
density at the position of the layer reduction. The behavior of
the system shows that the stretching of the ordered structure
before the layer reduction causes an instability toward de-
creasing the number of layers. This decrease compresses the
system along the x direction, but apparently lowers the total
energy of the system.

Layer transitions occur at almost identical values of the
local particle density for various inclinations as can be seen
in Fig. 19. Here the local lattice constant dy�x� is plotted as a
function of the local particle density ��x�. Transitions from 8
to 7 layers occur when ��x� becomes smaller than 0.42, tran-
sitions from 7→6 layers for ��x��0.3, and transitions from
6→5 layers for ��x��0.21.

1. Static stretching analysis

The scenario above can be qualitatively confirmed by the
following rough estimation: starting from an ideal triangular
configuration with a given number of layers �nl� in a channel
of fixed width, we calculate the potential energy per particle
for different particle densities by scaling the channel length
of the static configuration only. Plots of these energies per
particle for different values of nl as function of the particle
density � are shown in Fig. 20. The intersection points,
which are determined from linear approximation of both

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

FIG. 17. �Color online� Simulation: the sequence of configuration snapshots �a�—�h� shows the process of a vanishing “defect” after the
layer transition zone �marked by the black rectangle� due to the change of particle marked by the filled black square into the edge layer. The
snapshots have been taken every 500 BD time steps, i.e., �t=0.0375�B.
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curves in the region of intersection, serve as rough estimates
of the densities at the layer transition points. For the given
system the values for the transition 8→7 layers are: �8→7
�0.467
−2, and for the transition 7→6 layers: �7→6
�0.345
−2. So, we can conclude that a given layer structure
is stable for up to slightly overstretched perfect triangular
configurations �46�.

They show clear intersection points, indicating that for a
stretched configuration with nl layers in x direction it can
become energetically more favorable to switch to a com-
pressed configuration with �nl−1� layers.

2. Equilibrium configurations for confinement with nonparallel
walls

Also equilibrium BD simulations, i.e., simulations with

no external driving force �F̃i
ext=0�, of closed channels with

nonparallel walls result in a density gradient in the direction
of decreasing channel width. Here, confinement induced ar-
rangement of the particles into different number of layers
takes place. The particles just fluctuate about their equilib-

rium positions. A snapshot of such an equilibrium configura-
tion is shown in Fig. 21 where the confining funnel has the
small opening angle �Funnel=0.143 deg, i.e., over the full
channel length of Lx=800
 the channel width decreases by
�Ly =2
. This kind of layer transition is a purely geometrical
effect, whereas in the case of parallel walls and a constant
longitudinal driving field the occurrence of the density gra-
dient has a dynamical origin. In both cases the number of
layers which form depends on the value of the local particle
density ��x�.

E. Comparison with the experiment

The experimental result of the density gradient as well as
the interparticle distances are shown in Fig. 22. The behavior
closely resembles the behavior of the simulated system �cf.
Fig. 18�a��. The distance in x direction, dx, is continuously
stretched while the distance in y direction increases in a
sharp step at the position of the layer reduction. The density
decreases monotonously along the direction of motion of the
particles by about 20%.

In Fig. 23 snapshots of nonequilibrium defect configura-
tions are shown both for the experiment �a� and for the simu-
lation �b�. They reveal that the system is nearly triangular left
and right of the point of layer reduction. The change is
marked by a single defect only. The number of layers is
reduced one by one. Reductions by two or more layers have
not been observed in experiment or in simulation. Naturally,
this reduction produces a defect at the point of the transition.
Since, the position of the layer reduction is mainly deter-
mined by the density gradient, its location remains stable
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FIG. 21. �Color online� Simulation: Equilibrated configuration
snapshot of a funnel geometry with opening angle �Hopper

=0.143 deg. All walls are modeled as hard walls. No driving force
is applied and the particles interaction is dipolar ��=625.125�.
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with time on average. A more detailed analysis reveals, how-
ever, that the transition point oscillates back and forth around
this average position. At the transition the driven particles in
the bulk layers have to change the layer, causing the transi-
tion to move a little bit in direction of the flow. A particle
changing into the edge layer can neutralize the defect of the
transition locally. This causes a reconfiguration of the or-
dered structure, which in turn gives rise to repositioning of
the layer reduction zone back to a region of higher density.

F. Oscillatory behavior of the layer transition

There are various ways of numerically localizing the po-
sition of the layer transition. One can either make use of the
clear discontinuity of the local layer order parameters
�layer,nl

�x , t� �cf. Eq. �5�� appropriate for the transition from
nl to nl−1 layers, or of the location of the discontinuity of the
local lattice constant dy�x , t�. The local orientational order
parameter �6, which is often used for 2D systems �18�, is
not so significant for this system, as it is very sensitive to any
perturbation of the sixfold symmetry. The first three methods
have been used to study the position of the transition from
eight to seven layers. The result is given in Fig. 24.

In the nonequilibrium steady-state situation the position
of the layer reduction zone oscillates about a certain x posi-
tion. This can also be seen in the experimental data, as
shown in Fig. 25 �evaluated from the discontinuity in dy�.

Figures 24 and 25 show that the fluctuations are relatively
small, indicating a situation close to a stationary state.

G. Systems with screened Coulomb interaction

In order to study the influence of the particle interaction
range, we implemented the screened Coulomb �YHC� pair
interaction potential

Vij�rij� = �
�: rij � 


V0
exp�− �D�rij − 
��

rij
: 
 � rij � rcut

0: rij � rcut

� , �8�

with the inverse Debye screening length �D which interpo-
lates the potential between the hard core case �for �D→��
and the unscreened Coulomb potential �for �D=0�. V0 is the
value of the pair potential at contact which can be written as

�V0 =
Z2

�1 + �D
/2�2

�B



,

where Z is the charge of the colloids and �B
=e2 / �4��0�skBT� is the so-called Bjerrum length of the sol-
vent with permittivity �s.

Figure 26 is the analogous plot to Fig. 18�a� for a system
of YHC particles with the contact value �V0=400 and �D
=4.0
−1. Under these simulation conditions no layer transi-
tion as for the dipolar system is found. For x	450
 the
particles are ordered in seven layers, but for smaller values
only a few islands of particles arranged in layers can be
identified from the local order parameters along the channel
in Fig. 26�b�. The interaction range of a YHC system with
�D=4.0
−1 is much smaller than for the dipolar system, be-
cause of the stronger decay of the pair potential. This decay
is also the reason for the large fluctuations of the local lattice
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(a)

8 layers

sreyal7sreyal8

7 layers
(b)

FIG. 23. �Color online� Snapshots of defect configurations ob-
tained from a Delaunay triangulation of the particles moving in the
channel. The particles are coded according to the number of their
nearest neighbors. Open circles mark the bulk particles with six
nearest neighbors and the edge particles, symbol � corresponds to
a fivefold symmetry, and symbol � to a sevenfold symmetry. �a�
Experiment: In order to minimize the effects of fluctuations on a
short-time scale, 50 images have been averaged. �b� BD simulation
for a channel with parallel walls.
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FIG. 24. �Color online� Simulation: movement of the x position
of layer transition, obtained from �layer,nl

�x , t�, for the transitions
8→7 layers and 7→6 layers. The system parameters are identical
with those of Fig. 16.
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FIG. 25. �Color online� Experiment: movement of the x position
of layer transition for the transitions 8→7.

HENSELER et al. PHYSICAL REVIEW E 81, 041402 �2010�

041402-12



constant dx in Fig. 26�a�. A density gradient cannot form
along the channel, and so no layer transition is found. The
particles need to be strongly coupled with their neighboring
particles to form a density gradient, i.e., the pair interaction
range has to be at minimum of the order of the average
particle spacing.

We studied the equilibrium density profiles perpendicular
to the confining walls of a YHC system for a selection of �D
values and the value at particle contact �V0=50. The total
particle density is n=0.45
−2 which corresponds to a pack-
ing fraction ��0.79. For �D=2
−1 boundary induced layer-
ing is found which becomes less pronounced for increasing
�, i.e., decreasing interaction range. For �D	4
−1 the sys-
tems are fluid in the equilibrium state at this packing frac-
tion, and only a depletion layer between the edge and the
bulk particles was found.

The average particle separation of the unbounded system
has the value R�1.38
. For �D	4
−1 the characteristic in-
teraction range is 
+�D

−1�1.25
 which is smaller than R.
Now, we plot in Fig. 27 the superposition of 100 configu-

rations with a time separation of �t=500 BD steps after
1.4�106 BD steps for the case of the alternative boundary
condition in flow direction. The driving force corresponding
to an inclination of �=0.1 deg acts within x� �100,700�
.
All four superimposed configurations show the formation of
layers near the channel end at x=700
, where the particles
enter the reservoir. In Fig. 27�a� the characteristic interaction
range of the YHC pair potential is greater than the average
particle spacing R. For this case we find multiple layer tran-
sitions from five layers up to eight layers along the channel.
The system behavior is similar to the situation of the dipolar
systems. With increasing values of �D less layer transitions
are observed. Figures 27�b�–27�d� show increasing depletion
zones at the channel start at x=100
. These depletion zones
are followed by regions where the particles are in the liquid

state. Notice, that for �D=8
−1 and �D=12
−1 the systems
are in the liquid state in equilibrium, too �cf. Fig. 27�. The
corresponding density profiles in x direction are given in Fig.
28.

The systems with �D=8
−1 and �D=12
−1 show a rapid
increase in the local density from about 0.5
−2 up to values
greater than 0.8
−2 in the interval x� �600,700�
. The par-
ticles under the influence of the constant driving force are
blocked due to filling of the reservoir at the channel end.
During the simulation run the particles pile up at the inter-
face between the channel and the reservoir, because the par-
ticles of the channel are pushed into the reservoir but within
the reservoir the particles diffuse almost freely due to the
short range of the YHC interaction �high values of �D�. This
leads to a situation where the influx into the reservoir is
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FIG. 26. �Color online� Simulation: �a� Local lattice constants dx

and dy and local particle density � in the BD simulation of a system
with screened Coulomb interaction. �b� Corresponding local layer
order parameters �layer,nl

. The system parameters are: Lx=800
,
Ly =10
, n=0.4
−2, �V0=400, �D=4.0
−1, �YHC=448.4, and �
=0.2 deg.

FIG. 27. �Color online� Simulation: superimposed configura-
tions of systems with screened Coulomb pair interaction for a se-
lection of inverse screening lengths: �a� �D=2
−1, �b� �D=4
−1, �c�
�D=8
−1, and �d� �D=12
−1. The particle transport is induced for
x� �100,700�
 by the inclination �=0.1 deg.
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FIG. 28. �Color online� Simulation: density profiles along the
channel for a selection of Debye screening lengths �D of a YHC
system ��V0=50�. The driving force is applied only within the
channel region x� �100,700�
 and the system is periodic in x di-
rection. These profiles correspond to the superimposed configura-
tions of Fig. 27. For better clarity, we replicate the interval x
� �0,100�
 again on the right hand side of the diagram.
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greater than the particle drift within the reservoir being the
reason for the sharp density gradients, which lead to the sud-
den onset of a layered structure with eight layers in the Figs.
27�c� and 27�d�. For �D=12
−1 even a layer transition to
nine layers takes place due to local density values greater
than 0.9
−2 which is not observed for the other three cases.

VI. ALTERNATIVE BOUNDARY CONDITIONS IN FLOW
DIRECTION

The connection of the channel to the two reservoirs has
great influence on the characteristics of the stationary non-
equilibrium density profile along the channel. Therefore, we
performed simulations with an alternative boundary condi-
tion, where the constant external driving force only acts
within the interval x� �100,700�
 and a periodic boundary
condition is applied in x direction. Figure 29 shows the re-
sulting stationary nonequilibrium density profiles after 3
�106 BD time steps for a selection of inclinations � of a
dipolar system. For each inclination two curves are plotted
which correspond to the two channel widths Ly =8
 and Ly
=10
. Obviously, the steady-state density profile along the
channel does not depend on the channel width.

Comparison of these density profiles with those of Fig. 11
highlights the strong influence of the different realization of
the reservoirs. All simulations are started from a homoge-
neous particle distribution of local density �=0.4
−2. Instead
of a density decrease we find in Fig. 29 a buildup of the local
density occurring due to the filling of the reservoir at the
channel end. This corresponds to the experimental situation,
where the reservoir at the channel end is filled. For the small
inclination �=0.04 deg a linearly increasing density profile
is obtained within the channel region. Higher inclinations
lead to deviation from such a linear profile. For �=0.2 deg a
constant profile with local density ��0.275
−2 in x
� �100,400�
 is followed by a sharp increase in the local
density up to �=0.67
−2 at the channel end at x=700
.

In the stationary nonequilibrium state the density profile
in the reservoirs can be approximated by a linear gradient.
The net flux J in the reservoirs fulfills Fick’s law

J =
kBT

2l0
��1 − �0� , �9�

where �0���x=100
� and �1���x=700
� are the local
number densities at the channel beginning and end respec-
tively. Due to the periodic boundary condition in x direction
this is equal to the net flux in the channel region x
� �100,700�
. Therefore, J may be approximated by the
slope of the linear density profiles in the two reservoir re-
gions.

Figure 30 shows the layer order parameters �layer,nl
for a

selection of inclinations � in combination with the corre-
sponding superimposed configurations. Clearly, the layer
configuration and the number of layer transitions can be
tuned by the strength of the driving force for the realization
of the boundary condition 2 of the flow. Increasing � leads to
multiple transitions. Interestingly, the layer transitions from
seven to eight layers occur at identical x positions in the
Figs. 30�b�–30�d�. As before, the particle flow across the
position of the layer transition, which remains fixed in posi-
tion.

VII. CONCLUSION

We have reported on a variety of ordering and transport
phenomena which are induced by the confinement of colloi-
dal particles to microchannels and by the application of a
constant driving force along the channel. We have analyzed
the particle behavior both under equilibrium and under �sta-
tionary� nonequilibrium conditions both in experiment and
by Brownian dynamics simulations.

First, we have studied the self-assembly of repulsive par-
ticles under equilibrium conditions, i.e., without a driving
force applied. We have observed a boundary induced forma-
tion of a global layered structure in the channels. Such a
behavior is known for a variety of related systems
�14,30,33,41,43�. Systematically, we have analyzed the influ-
ence of the channel width Ly and the influence of the strength
of the dipolar particle repulsion. Based on the order param-
eter we have calculated the effect of channel width and in-
teraction strength on laterally confined superparamagnetic
particles within the solid state. The system structure varies
between solidlike and liquidlike behavior when the channel
width is changed. When the channel width is increased, a
periodic destabilization of the layered structure with nl layers
takes place, and the system switches to a structure with nl
+1 layers. The bulk defect concentration Cdefect

b shows peri-
odic oscillations as a function of the channel width Ly, but
not as a function of the dimensionless interaction parameter
�. The period of the oscillations is R, where R denotes the
average distance of two neighboring particle layers in an
unbounded hexagonal system. Such a behavior previously
was reported as a result of both experiments and simulations
of a similar system by Haghgooie et al. �30,31,40�. Our data
show excellent qualitative and quantitative agreement with
their results.
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FIG. 29. �Color online� Simulation: density profiles for a selec-
tion of inclinations � of a system with the inclination �i.e., the
driving force� applied only within the region x� �100,700�
. The
system is periodic in x direction. Shown are histograms obtained by
evaluation of 1000 configurations of the system having reached a
stationary nonequilibrium situation �after �2�106 BD time steps�.
The applied magnetic field strength is B=0.25 mT, �=133.4, and
the overall particle density n=0.4
−2. For better clarity, we repli-
cate the interval x� �0,100�
 again on the right hand side of the
diagram.
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We have shown that the number of layers can be reduced
in equilibrium situations with nonparallel walls and in non-
equilibrium situations with parallel walls and different
boundary conditions at the channel ends. One of our main
findings is that in the nonequilibrium situation the particles
flow across the layer reduction zones, which remain at stable
positions.

In particular, we have predicted and systematically ana-
lyzed the phenomenon of particle layer reduction under the
influence of a constant driving force acting along the chan-
nel. For small driving forces Fext, where the particles are not
yet in the regime of plug flow the superparamagnetic par-
ticles dynamically rearrange into different numbers of layers
during transport through the channels. We have found, that
along the channel the number of layers decreases gradually
by steps of one. The occurrence of the layer reduction has
been confirmed by the experiments. In the experiments, the
massive particles sediment to the bottom of the channel due
to gravity, and there they form a quasi-2D system. After hav-
ing equilibrated the system, the whole setup is tilted, so that
the colloidal particles are driven through a lithographically
fabricated microchannel under the influence of gravity.

In very good qualitative agreement with the experiments
we have shown that the reduction in layers originates from a
density gradient along the channel. Quantitative differences

are expected, because the Stokes diffusion coefficient D0,
which is valid for unbounded systems and is used in the
simulations, differs from the real diffusion coefficient in
presence of the confinement of the experimental setup �47�.

The reduction in layers takes place for specific values of
the local density ��x� and within a distance of only a few
particle diameters. We have explicitly shown that the par-
ticles flow across the regions of layer reduction and thereby
dynamically adjust to the local density ��x�. But additional
simulation studies of systems with screened Coulomb par-
ticle interaction, where the interaction range has been varied,
have shown that a longitudinal density gradient and conse-
quently layer transitions occur for particle interaction ranges
which are greater than the average distance of the particles
from their neighbors. For particle pair potentials with smaller
interaction ranges than the average nearest neighbor separa-
tion we observe that the layer transition region smears out,
because more particle defects occur due to a smaller density
gradient. No layer transitions will be observed for the model
case of hard-core particles. For our choice of boundary con-
ditions we have found, that the density gradient becomes
more pronounced with decreasing inclination �, i.e., with
decreasing driving force. The density decrease is maximum
at �=0.0 deg, because the particle reinsertion scheme,
which we used, induces a pressure difference between both
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FIG. 30. �Color online� Simulation: Stationary nonequilibrium situations of systems where the driving force is applied only in x
� �100,700�
 for a selection of inclinations: �a� �=0.04 deg, �b� �=0.08 deg, �c� �=0.1 deg, �d� �=0.2 deg. For every inclination we
show the average local layer order parameters �layer,nl

and the corresponding superposition of 1000 snapshots. The other simulation
parameters are: Lx=800
, Ly =10
, n=0.4
−2, B=0.25 mT, and �=133.4. The numbers in the figures indicate the number of layers being
present within a certain region.
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channel ends, even in the case when no external driving
force has been applied.

Generally, we have seen both in simulations and in ex-
periments that the local density decreases monotonically and
continuously along the channel. In front of a layer transition
the local structure is stretched in longitudinal direction,
whereas after the layer transition the structure is longitudi-
nally compressed and one layer has disappeared. Therefore,
the local lattice constant dx�x� in longitudinal direction in-
creases up to the position of the layer transition, at which it
shows a noncontinuous decrease. Simultaneously, the local
lattice constant dy�x� in transversal direction is constant in
front of the layer transition, at which it jumps to the next
level according to the number of layers and remains constant
again. Both effects compensate each other and thus explain
the continuous behavior of the local density along the chan-
nel.

By a static stretching analysis we have confirmed that a
certain layered structure becomes energetically unstable and
thus changes to a structure, where it has one layer less. The
estimated values of the local density, where the transition
takes place, are in quite good agreement with the observa-
tion. In stationary nonequilibrium the position of the layer
transition oscillates about a fixed position. The amplitude of
the oscillations depends on the strength of the particle inter-
action. We have shown, that the oscillations of the layer tran-
sition can either be analyzed by the appropriate local layer
order parameters �layer,nl

�x� or by the local lattice constant
dy�x�.

Each layer transition is connected to a defect, which is
defined by a pair of particles with five and seven nearest
neighbors, respectively. Additional periodic defects have
been observed along the channel walls. Due to the purely
repulsive particle interaction the edge particles are pushed
against the flat walls. This leads to very small transverse
fluctuations of the edge particles and a slightly higher line
density of the edge particles than of the particles belonging
to the layers in the central region of the channel.

It has been shown, that channel walls made of periodi-
cally fixed particles give rise to shear effects between the
particles of the central layers, which move faster, than the
particles, which are in the layer next to the edge particles.
The latter particles show small oscillations about the average
drift velocity.

The results shown concern a rather simple classical model
system. The observed phenomena, however, will take place
in any systems of long range interacting particles which are
driven through a constriction. Therefore the results which
have been gained from the studies of this system can be seen
as a first step in the understanding of transport processes in
many biological and quantum systems.
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